应对GRE数学神器——最小值代入检验法

  什么是最小值代入检验法呢?嘿嘿,它在应对GRE数学考试时可起着大大的作用。现在出国留学网萌萌哒小编来为你具体解析。

  顾名思义,这种方法通过代入某一个值求解,将复杂的问题转化成简单易懂的代数式。我们前面说过,GRE所测试的数学知识不超过初中水平,但ETS却轻而易举地就能把这些题变难,惯用的手段不是屡设陷阱,就是用晦涩复杂的语言来表达一个事实上很清楚简单的数学计算。最小值代入检验法是ETS这些伎俩的克星,它通过一个虽未获证明却着实可用的土办法排除绝对错误的选项,从而顺利地找到正确答案。

  怎样运用这种方法?

  1. 看看问题是否很复杂以至于用通常的代数法无济于事(这只需要花几秒钟的时间)。

  2. 代入选项中处于中间值的选项,比如5个选项的值分别为1,2,3,4,5,你可以先代入值3试试,然后判断应该是大于3的数还是小于3的数,接着继续代入。

  3. 如果选项不能为你提供有效的解题线索,你可以从题干入手,寻找一个符合题干变量的最小的值如1或者2。

  4. 排除肯定错误的选项,直到正确选项出项在你面前。

  例1:

  When the positive integer Z is divided by 24, the remainder is 10. What is the remainder when Z is divided by 8?

  a) 1

  b) 2

  c) 3

  d) 4

  e) 5

  解答:

  如果要用纯代数方程式来解题的话,那你就会浪费考试的宝贵时间而且最后一无所获。解这一题的最好办法是用最小值代入检验。找出一个数Z,使Z/24有一个余数10。我们可以假设Z=34(34=24+10).而当34 被8 除时,商为4,余数为2。如果这时你还不满意的话。试试58这个数(58=24×2+10).之后,你就能确信(B) 是正确答案。

  策略: 这种最小值代入检验法对你检查确认已选答案也甚为有效。当然,用原来的方法再算一遍也能达到检查的目的。但是,如果你采用这种方法确认的话,你就相当于让另外一个和你智慧相当的人和你一同做题,可想而知,这能大大提高你的准确率(100%把握)。要知道,在GRE考试的数学部分每道题你有2分钟的时间,不要担心考试时间不够。

  例2

  If n is an even integer, which of the following must be an odd integer?

  a) 3n - 2

  b) 3(n + 1)

  c) n - 2

  d) n/3

  e) n/2

  解答:

  答案是(B)。 当你不能确定未知数有几个值时,尽管使用最小值代入检验法。在这里,你可以设n等于2. 而当n = 2时, 3(n + 1) = 9。问题迎刃而解。如果你没有把握的话可以再试几个数。

  希望以上所说能为你带来帮助,愿你能将它吸入骨髓,考试时运用自如!敬请关注m.liuxue86.com33呦!

分享
qqQQ
qzoneQQ空间
weibo微博
《应对GRE数学神器——最小值代入检验法.doc》
将本文的Word文档下载,方便收藏和打印
下载文档

热门关注

热门问答

付费下载
付费后无需验证码即可下载
限时特价:4.99元/篇 原价10元
微信支付

免费下载仅需3秒

1、微信搜索“月亮说故事点击复制

2、进入公众号免费获取验证码

3、输入验证码确认 即可复制

4、已关注用户回复“复制”即可获取验证码

微信支付中,请勿关闭窗口
微信支付中,请勿关闭窗口
×
温馨提示
支付成功,请下载文档
咨询客服
×
常见问题
  • 1、支付成功后,为何无法下载文档?
    付费后下载不了,请核对下微信账单信息,确保付费成功;已付费成功了还是下载不了,有可能是浏览器兼容性问题。
  • 2、付费后能否更换浏览器或者清理浏览器缓存后下载?
    更换浏览器或者清理浏览器缓存会导致下载不成功,请不要更换浏览器和清理浏览器缓存。
  • 3、如何联系客服?
    如已按照上面所说方法进行操作,还是无法复制文章,请及时联系客服解决。客服微信:ADlx86
    添加时请备注“文档下载”,客服在线时间为周一至周五9:00-12:30 14:00-18:30 周六9:00-12:30

  什么是最小值代入检验法呢?嘿嘿,它在应对GRE数学考试时可起着大大的作用。现在出国留学网萌萌哒小编来为你具体解析。

  顾名思义,这种方法通过代入某一个值求解,将复杂的问题转化成简单易懂的代数式。我们前面说过,GRE所测试的数学知识不超过初中水平,但ETS却轻而易举地就能把这些题变难,惯用的手段不是屡设陷阱,就是用晦涩复杂的语言来表达一个事实上很清楚简单的数学计算。最小值代入检验法是ETS这些伎俩的克星,它通过一个虽未获证明却着实可用的土办法排除绝对错误的选项,从而顺利地找到正确答案。

  怎样运用这种方法?

  1. 看看问题是否很复杂以至于用通常的代数法无济于事(这只需要花几秒钟的时间)。

  2. 代入选项中处于中间值的选项,比如5个选项的值分别为1,2,3,4,5,你可以先代入值3试试,然后判断应该是大于3的数还是小于3的数,接着继续代入。

  3. 如果选项不能为你提供有效的解题线索,你可以从题干入手,寻找一个符合题干变量的最小的值如1或者2。

  4. 排除肯定错误的选项,直到正确选项出项在你面前。

  例1:

  When the positive integer Z is divided by 24, the remainder is 10. What is the remainder when Z is divided by 8?

  a) 1

  b) 2

  c) 3

  d) 4

  e) 5

  解答:

  如果要用纯代数方程式来解题的话,那你就会浪费考试的宝贵时间而且最后一无所获。解这一题的最好办法是用最小值代入检验。找出一个数Z,使Z/24有一个余数10。我们可以假设Z=34(34=24+10).而当34 被8 除时,商为4,余数为2。如果这时你还不满意的话。试试58这个数(58=24×2+10).之后,你就能确信(B) 是正确答案。

  策略: 这种最小值代入检验法对你检查确认已选答案也甚为有效。当然,用原来的方法再算一遍也能达到检查的目的。但是,如果你采用这种方法确认的话,你就相当于让另外一个和你智慧相当的人和你一同做题,可想而知,这能大大提高你的准确率(100%把握)。要知道,在GRE考试的数学部分每道题你有2分钟的时间,不要担心考试时间不够。

  例2

  If n is an even integer, which of the following must be an odd integer?

  a) 3n - 2

  b) 3(n + 1)

  c) n - 2

  d) n/3

  e) n/2

  解答:

  答案是(B)。 当你不能确定未知数有几个值时,尽管使用最小值代入检验法。在这里,你可以设n等于2. 而当n = 2时, 3(n + 1) = 9。问题迎刃而解。如果你没有把握的话可以再试几个数。

  希望以上所说能为你带来帮助,愿你能将它吸入骨髓,考试时运用自如!敬请关注m.liuxue86.com33呦!

一键复制全文